Paramodular forms of weight three

Cris Poor
Fordham University

Workshop
Calabi-Yau Motives
Mainz, January 2019

An outline of this talk

1. Part I. Locating nonlift paramodular newforms.
2. Part /I. Definitions: paramodular forms, Jacobi forms, theta blocks.
3. Part III. Constructions of paramodular forms.

Joint work

This video talk includes joint work with Jerry Shurman (Reed College, Portland, Oregon) and David S. Yuen (Univeristy of Hawaii, Manoa, Hawaii).

siegelmodularforms.org

- Our paramodular website: www.siegelmodularforms.org
- (Joint with J. Shurman, D. S. Yuen.)

Objects of interest

- Paramodular cusp forms of weight k and paramodular level N.

$$
S_{k}(K(N))
$$

- Jacobi cusp forms of weight k and index N.

$$
J_{k, N}^{\text {cusp }}
$$

- The Gritsenko lift from Jacobi cusp forms of index N to paramodular cusp forms of level N is an advanced version of the Maass lift.

$$
\text { Grit : } J_{k, N}^{\text {cusp }} \rightarrow S_{k}(K(N))
$$

- We are interested in the nonlift Hecke eigenforms, especially those of low weight.

$$
\text { new eigenforms in } S_{k}(K(N)) \backslash \operatorname{Grit}\left(J_{k, N}^{\text {cusp }}\right)
$$

Weight $k=1$

- Paramodular cusp forms of weight 1 are trivial.

$$
S_{1}(K(N))=\{0\}
$$

- This follows from the result of Skoruppa that Jacobi cusp forms of weight 1 (and trivial character) are trivial.

$$
J_{1, N}^{\text {cusp }}=\{0\}
$$

- Not so relevant here but, if we allow a character, there are nontrivial weight 1 Jacobi cusp forms, for example the theta quarks of Gritsenko, Skoruppa, Zagier.

$$
\frac{\vartheta_{a} \vartheta_{b} \vartheta_{a+b}}{\eta} \in J_{1, a^{a}+a b+b^{2}}^{\text {cusp }}\left(\chi_{3}\right), \quad a \not \equiv b \bmod 3
$$

Weight $k=2$

- Paramodular Conjecture of Brumer and Kramer: the modularity of abelian surfaces defined over \mathbb{Q} with minimal endomorphisms is shown by weight two nonlift paramodular newforms with rational eigenvalues.
- Poor, Shurman, Yuen have some (partly rigorous, partly heuristic) tables up to $N \leq 1000$

N	$\operatorname{dim} J_{2, N}^{\text {cusp }}$	$\operatorname{dim} S_{2}(K(N))$	various comments
249	5	6	BP+Grit; Jac
277	10	11	modular! $Q / L ; \quad$ Jac
295	6	7	BP+Grit; Jac
349	11	12	$B P+G r i t ; ~ J a c$
353	11	12	modular! BP+Grit; Jac

Modularity proven for $N=277,353,587^{-}$

(On arXiv- On the paramodularity of typical abelian surfaces, Brumer, Pacetti, Poor, Tornaria, Voight, Yuen)

- Generalize method of Faltings-Serre to GSp(4).
- Need residual representation at $p=2$ irreducible.
- Class field theory computer calculations classifying extensions with prescribed ramification and Galois group contained in $\operatorname{GSp}\left(4, \mathbb{F}_{2}\right)$.
- Hecke eigenvalue computer calculations for paramodular eigenforms written as rational functions of Gritsenko lifts and Borcherds products.
- Galois representations associated to automorphic representations whose archimedian component is a holomorphic limit of discrete series.

Modularity proven for $N=731$

Tobias Berger and Krzysztof Klosin: Deformations of Saito-Kurokawa type and the Paramodular Conjecture.
arXiv:1710.10228v2 (appendix by Poor, Shurman, Yuen)

- Use theory of Galois deformations.
- Use residual representation at p reducible and find elliptic E / \mathbb{Q} realizing a two dimensional piece.
- Possess a paramodular nonlift eigenform that is congruent to a Gritsenko lift modulo a prime p for which the abelian surface A / \mathbb{Q} has rational p-torsion. (For $N=731$, this is $p=5$.)
- Galois representations associated to automorphic representations whose archimedian component is a holomorphic limit of discrete series.

Weight $k=3$

- The modularity of some hypergeometric motives is conjecturally shown by weight three nonlift paramodular newforms with rational eigenvalues.
- Examples of candidate hypergeometric motives have been shared with us by Dave Roberts in 2014; for example, conductor $N=257$ matches a few Euler factors of an eigenform in $S_{3}(K(257))$.
- Perhaps there are also other types of arithmetic objects or Galois representations that correspond to weight three paramodular newforms?

Weight $k=3$ should be more accessible than weight two

- Galois representations arising from weight three paramodular forms are better understood.
Papers of Rainer Weissauer
- Dimension formulae for $\operatorname{dim} S_{k}(K(N))$ are known $(k \geq 3)$ for N prime by Ibukiyama and for N squarefree by Ibukiyama and Kitayama.

Tomoyoshi Ibukiyama: Dimension formulas of Siegel modular forms of weight 3 and supersingular abelian surfaces Siegel Modular Forms and AbelianVarieties. Hamana Lake (2007).
Tomoyoshi Ibukiyama and Hidetaka Kitayama: Dimension formulas of paramodular forms of squarefree level and comparison with inner twist J. Math. Soc. Japan 69 (2017).

Weight $k=3$

- Use Ibukiyama's formula for $\operatorname{dim} S_{3}(K(p))$ and Skoruppa and Zagier's formula for $\operatorname{dim} J_{3, p}^{\text {cusp }}$.

p	$\operatorname{dim} J_{3, p}^{\text {cusp }}$	$\operatorname{dim} S_{3}(K(p))$	various comments
61	6	7	BP+Grit and Q/L
73	8	9	BP+Grit and Q/L
79	7	8	BP+Grit and Q/L
89	8	9	
97	11	13	
101	9	11	
103	10	12	

Weight $k=3$

- Ash, Gunnells, and McConnell saw eigensystems for $p \in\{61,73,79\}$ in $H^{5}\left(\Gamma_{0}(p), \mathbb{C}\right)$ and predicted that these came from Siegel modular forms.
Avner Ash, Paul E. Gunnells, and Mark McConnell: Cohomology of congruence subgrous of $\mathrm{SL}_{4}(\mathbb{Z})$. II J. Number Theory 128 (2008).

$$
\Gamma_{0}(p)=\left(\begin{array}{cccc}
* & * & * & * \\
* & * & * & * \\
* & * & * & * \\
p * & p * & p * & *
\end{array}\right) \cap \mathrm{SL}(4, \mathbb{Z}), \quad * \in \mathbb{Z} \text {. }
$$

- It was Armand Brumer who noticed the connection to paramodular forms evident in the dimension formulae.

Euler factors computed by Ash, Gunnells, and McConnell.

- Eigensystem from $H^{5}\left(\Gamma_{0}(61), \mathbb{C}\right)$

$$
\begin{aligned}
& Q_{2}(t)=1+7 t+24 t^{2}+56 t^{3}+64 t^{4} \\
& Q_{3}(t)=1+3 t+3 t^{2}+81 t^{3}+729 t^{4}
\end{aligned}
$$

- Eigensystem from $H^{5}\left(\Gamma_{0}(73), \mathbb{C}\right)$

$$
\begin{aligned}
& Q_{2}(t)=1+6 t+22 t^{2}+48 t^{3}+64 t^{4} \\
& Q_{3}(t)=1+2 t+3 t^{2}+54 t^{3}+729 t^{4}
\end{aligned}
$$

- Eigensystem from $H^{5}\left(\Gamma_{0}(79), \mathbb{C}\right)$

$$
\begin{aligned}
& Q_{2}(t)=1+5 t+14 t^{2}+40 t^{3}+64 t^{4} \\
& Q_{3}(t)=1+5 t+42 t^{2}+135 t^{3}+729 t^{4}
\end{aligned}
$$

Weight $k=3$

- Use Ibukiyama and Katsurada's formula for $\operatorname{dim} S_{3}(K(N)), N$ squarefree, or heuristic programs written by Jerry and David

p	$\operatorname{dim}_{3, p}^{\text {cusp }}$	$\operatorname{dim} S_{3}(K(p))$	various comments
61	6	7	$\mathrm{BP}+$ Grit and Q / L
69	5	6	
73	8	9	BP+Grit and Q/L
76	5	6	not squarefree
79	7	8	$B P+$ Grit and Q/L
82	7	8	

Part Two

Definitions: paramodular forms, Jacobi forms, theta blocks

Definition of Siegel Modular Forms

- Siegel Upper Half Space: $\mathcal{H}_{n}=\left\{Z \in M_{n \times n}^{\text {sym }}(\mathbb{C}): \operatorname{Im} Z>0\right\}$.
- Symplectic group: $\sigma=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \in \mathrm{Sp}_{n}(\mathbb{R})$ acts on $Z \in \mathcal{H}_{n}$ by $\sigma \cdot Z=(A Z+B)(C Z+D)^{-1}$.
- $\Gamma \subseteq S p_{n}(\mathbb{R})$ such that $\Gamma \cap \operatorname{Sp}_{n}(\mathbb{Z})$ has finite index in Γ and $S p_{n}(\mathbb{Z})$
- Slash action: For $f: \mathcal{H}_{n} \rightarrow \mathbb{C}$ and $\sigma \in \operatorname{Sp}_{n}(\mathbb{R})$, $\left(\left.f\right|_{k} \sigma\right)(Z)=\operatorname{det}(C Z+D)^{-k} f(\sigma \cdot Z)$.
- Siegel Modular Forms: $M_{k}(\Gamma)$ is the \mathbb{C}-vector space of holomorphic $f: \mathcal{H}_{n} \rightarrow \mathbb{C}$ that are "bounded at the cusps" and that satisfy $\left.f\right|_{k} \sigma=f$ for all $\sigma \in \Gamma$.
- Cusp Forms: $S_{k}(\Gamma)=\left\{f \in M_{k}(\Gamma)\right.$ that "vanish at the cusps" $\}$

Definition of paramodular form

- A paramodular form is a Siegel modular form for a paramodular group. In degree 2, the paramodular group of level N, is

$$
\Gamma=K(N)=\left(\begin{array}{cccc}
* & N * & * & * \\
* & * & * & * / N \\
* & N * & * & * \\
N * & N * & N * & *
\end{array}\right) \cap \operatorname{Sp}_{2}(\mathbb{Q}), \quad * \in \mathbb{Z},
$$

- $K(N)$ is the stabilizer in $\mathrm{Sp}_{2}(\mathbb{Q})$ of $\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus N \mathbb{Z}$.
- ${ }^{T} K(N) \backslash \mathcal{H}_{2}$ is a moduli space for complex abelian surfaces with polarization type $(1, N)$. (T is "transpose" here.)
- The paramodular Fricke involution splits paramodular forms into plus and minus spaces.

$$
S_{k}(K(N))=S_{k}(K(N))^{+} \oplus S_{k}(K(N))^{-}
$$

Arithmetic spin L-function

Any errors are my own.

Roberts and Schmidt define the following Hecke operators in order to compute the Langlands L-function of an eigenform $f \in S_{k}(K(N))^{\epsilon}$.

- $T_{0,1}(p)=K(N) \operatorname{diag}(p, p, 1,1) K(N)$
- $T_{1,0}(p)=K(N) \operatorname{diag}\left(p, p^{2}, p, 1\right) K(N)$
- $\left.f\right|_{k} T_{0,1}(p)=\lambda_{p} f,\left.f\right|_{k} T_{1,0}(p)=\mu_{p} f, \epsilon_{p}=$ Atkin-Lehner sign
- $p \nmid N$
$Q_{p}(f, t)=1-\lambda_{p} t+\left(p \mu_{p}+p^{2 k-3}+p^{2 k-5}\right) t^{2}-p^{2 k-3} \lambda_{p} t^{3}+p^{4 k-6} t^{4}$
- $p \| N$
$Q_{p}(f, t)=1-\left(\lambda_{p}+p^{k-3} \epsilon_{p}\right) t+\left(p \mu_{p}+p^{2 k-3}\right) t^{2}+p^{3 k-5} \epsilon_{p} t^{3}$
- $p^{2} \mid N$

$$
Q_{p}(f, t)=1-\lambda_{p} t+\left(p \mu_{p}+p^{2 k-3}\right) t^{2}
$$

Arithmetic spin L-function

Roberts and Schmidt compute the Langlands L-function of an eigenform $f \in S_{k}(K(N))^{\epsilon}$. (But I rewrote it in the arithmetic normalization.)

$$
L^{\operatorname{arith}}(s, f, \operatorname{spin})=\prod_{p} Q_{p}\left(f, p^{-s}\right)^{-1}
$$

$$
\Lambda^{\text {arith }}(s, f, \operatorname{spin})=\Gamma_{\mathbb{C}}(s) \Gamma_{\mathbb{C}}(s-k+2) L^{\text {arith }}(s, f, \text { spin })
$$

- $\Gamma_{\mathbb{C}}(s)=2 \Gamma(s)(2 \pi)^{-s}$
- Proven functional equation for the completed spin L-function

$$
\Lambda^{\operatorname{arith}}(2 k-2-s, f, \operatorname{spin})=(-1)^{k} \in N^{s-k+1} \Lambda^{\operatorname{arith}}(s, f, \text { spin })
$$

Fourier-Jacobi expansions

- Fourier expansion of Siegel modular form:

$$
f(Z)=\sum_{T \geq 0} a(T ; f) e(\operatorname{tr}(Z T))
$$

- Fourier expansion of paramodular form $f \in M_{k}(K(N))$ in coordinates:

$$
f\left(\begin{array}{cc}
\tau & z \\
z & \omega
\end{array}\right)=\sum_{\substack{n, r, m \in \mathbb{Z}: \\
n, m \geq 0,4 N n m \geq r^{2}}} a\left(\left(\begin{array}{cc}
n & r / 2 \\
r / 2 & N m
\end{array}\right) ; f\right) e(n \tau+r z+N m \omega)
$$

- Fourier-Jacobi expansion of paramodular form $f \in M_{k}(K(N))$:

$$
f\left(\begin{array}{ll}
\tau & z \\
z & \omega
\end{array}\right)=\sum_{m \in \mathbb{Z}: m \geq 0} \phi_{m}(\tau, z) e(N m \omega)
$$

Fourier-Jacobi expansion (FJE)

$$
\text { FJE: } f\left(\begin{array}{cc}
\tau & z \\
z & \omega
\end{array}\right)=\sum_{m \in \mathbb{Z}: m \geq 0} \phi_{m}(\tau, z) e(N m \omega)
$$

The Fourier-Jacobi expansion of a paramodular form is fixed term-by-term by the following subgroup of the paramodular group $K(N)$:

$$
P_{2,1}(\mathbb{Z})=\left(\begin{array}{cccc}
* & 0 & * & * \\
* & * & * & * \\
* & 0 & * & * \\
0 & 0 & 0 & *
\end{array}\right) \cap \operatorname{Sp}_{2}(\mathbb{Z}), \quad * \in \mathbb{Z}
$$

- $P_{2,1}(\mathbb{Z}) /\{ \pm I\} \cong \operatorname{SL}_{2}(\mathbb{Z}) \ltimes$ Heisenberg (\mathbb{Z})

Thus the coefficients ϕ_{m} are automorphic forms in their own right and easier to compute than Siegel modular forms. This is one motivation for the introduction of Jacobi forms.

Definition of Jacobi Forms: Automorphicity

Level one

- Assume $\phi: \mathcal{H} \times \mathbb{C} \rightarrow \mathbb{C}$ is holomorphic.

$$
\begin{aligned}
E_{m} \phi: \mathcal{H}_{2} & \rightarrow \mathbb{C} \\
\left(\begin{array}{c}
\tau \\
z \\
\hline
\end{array}\right) & \mapsto \phi(\tau, z) e(m \omega)
\end{aligned}
$$

- Assume that $E_{m} \phi$ transforms by $\chi \operatorname{det}(C Z+D)^{k}$ for

$$
P_{2,1}(\mathbb{Z})=\left(\begin{array}{cccc}
* & 0 & * & * \\
* & * & * & * \\
* & 0 & * & * \\
0 & 0 & 0 & *
\end{array}\right) \cap \operatorname{Sp}_{2}(\mathbb{Z}), \quad * \in \mathbb{Z}
$$

Definition of Jacobi Forms: Support

- Jacobi forms are tagged with additional adjectives to reflect the support $\operatorname{supp}(\phi)=\left\{(n, r) \in \mathbb{Q}^{2}: c(n, r ; \phi) \neq 0\right\}$ of the Fourier expansion

$$
\phi(\tau, z)=\sum_{n, r \in \mathbb{Q}} c(n, r ; \phi) q^{n} \zeta^{r}, \quad q=e(\tau), \zeta=e(z)
$$

- $\phi \in J_{k, m}^{\text {cusp }}$: automorphic and $c(n, r ; \phi) \neq 0 \Longrightarrow 4 m n-r^{2}>0$
- $\phi \in J_{k, m}$: automorphic and $c(n, r ; \phi) \neq 0 \Longrightarrow 4 m n-r^{2} \geq 0$
- $\phi \in J_{k, m}^{\text {weak }}$: automorphic and $c(n, r ; \phi) \neq 0 \Longrightarrow n \geq 0$
- $\phi \in J_{k, m}^{\mathrm{wh}}$: automorphic and $c(n, r ; \phi) \neq 0 \Longrightarrow n \gg-\infty$ ("wh" stands for weakly holomorphic)

Index Raising Operators $V(\ell): J_{k, m} \rightarrow J_{k, m \ell}$ from Eichler-Zagier

The Jacobi $V(\ell)$ are images of the elliptic $T(\ell)$.
Elliptic Hecke Algebra \longrightarrow Jacobi Hecke Algebra

$$
\begin{gathered}
\sum \mathrm{SL}_{2}(\mathbb{Z})\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \mapsto \sum P_{2,1}(\mathbb{Z})\left(\begin{array}{cccc}
a & 0 & b & 0 \\
0 & a d-b c & 0 & 0 \\
c & 0 & d & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
\sum_{\substack{a d=\ell \\
b \bmod d}} S L_{2}(\mathbb{Z})\left(\begin{array}{ll}
a & b \\
0 & d
\end{array}\right) \mapsto \sum_{\substack{a d=\ell \\
b \bmod d}} P_{2,1}(\mathbb{Z})\left(\begin{array}{llll}
a & 0 & b & 0 \\
0 & \ell & 0 & 0 \\
0 & 0 & d & 0 \\
0 & 0 & 0 & 1
\end{array}\right) \\
T(\ell) \mapsto V(\ell)
\end{gathered}
$$

Fourier-Jacobi expansion of the Gritsenko lift

Any Jacobi cusp form can be the leading Fourier-Jacobi coefficient of a paramodular form.

Theorem (Gritsenko)

For $\phi \in J_{k, m}^{\text {cusp }}$ the series $\operatorname{Grit}(\phi)$ converges and defines a map

$$
\begin{aligned}
& \text { Grit: : J.cusp } \rightarrow S_{k}(K(m))^{\epsilon}, \quad \epsilon=(-1)^{k} . \\
& \operatorname{Grit}(\phi)\left(\begin{array}{c}
\tau \\
z \\
z
\end{array}\right)=\sum_{\ell \in \mathbb{N}}\left(\phi \mid V_{\ell}\right)(\tau, z) e(\ell m \omega) .
\end{aligned}
$$

$$
c\left(n, r ; \phi \mid V_{\ell}\right)=\sum_{\substack{a \in \mathbb{N}: \\ a \mid \operatorname{gcd}(n, r, \ell)}} a^{k-1} c\left(\frac{n \ell}{a^{2}}, \frac{r}{a} ; \phi\right)
$$

Borcherds Product Summary

Theorem (Borcherds, Gritsenko, Nikulin)

Given $\psi \in J_{0, N}^{\mathrm{wh}}(\mathbb{Z})$, a weakly holomorphic weight zero, index N Jacobi form with integral coefficients

$$
\psi(\tau, z)=\sum_{n, r \in \mathbb{Z}: n \geq-N_{0}} c(n, r) q^{n} \zeta^{r}
$$

there is a weight $k^{\prime} \in \mathbb{Z}$, a character χ, and a meromorphic paramodular form $\operatorname{Borch}(\psi) \in M_{k^{\prime}}^{\text {mero }}(K(N))(\chi)$

$$
\operatorname{Borch}(\psi)(Z)=q^{A} \zeta^{B} \xi^{C} \prod_{n, m, r \in \mathbb{Z}}\left(1-q^{n} \zeta^{r} \xi^{N m}\right)^{c(n m, r)}
$$

converging in a nghd of infinity and defined by analytic continuation.

Theta Blocks: a great way to make Jacobi forms due to Gritsenko, Skoruppa, and Zagier

- Dedekind Eta function $\eta \in J_{1 / 2,0}^{\text {cusp }}(\epsilon)$

$$
\eta(\tau)=q^{1 / 24} \prod_{n \in \mathbb{N}}\left(1-q^{n}\right)
$$

- Odd Jacobi Theta function $\vartheta \in J_{1 / 2,1 / 2}^{\text {cusp }}\left(\epsilon^{3} v_{H}\right)$

$$
\vartheta(\tau, z)=q^{1 / 8}\left(\zeta^{1 / 2}-\zeta^{-1 / 2}\right) \prod_{n \in \mathbb{N}}\left(1-q^{n}\right)\left(1-q^{n} \zeta\right)\left(1-q^{n} \zeta^{-1}\right)
$$

- $\mathrm{TB}_{k}\left[d_{1}, d_{2}, \ldots, d_{\ell}\right](\tau, z)=\eta(\tau)^{2 k-\ell} \prod_{j=1}^{\ell} \vartheta\left(\tau, d_{j} z\right) \in J_{k, m}^{\text {mero }}\left(\epsilon^{2 k+2 \ell}\right)$ where $2 m=d_{1}^{2}+d_{2}^{2}+\cdots+d_{\ell}^{2}$ and $d_{i} \in \mathbb{N}$.

Part Three

Constructions of paramodular forms

Integral Closure (PY 2009)

Pick your two favorite Gritsenko lifts $G_{1}, G_{2} \in S_{k}(K(N))$ and define a map

$$
\begin{aligned}
M: S_{k}(K(N)) & \rightarrow\left\{\left(H_{1}, H_{2}\right) \in S_{2 k}(K(N)) \times S_{2 k}(K(N)): H_{1} G_{2}=H_{2} G_{1}\right\} \\
f & \mapsto\left(G_{1} f, G_{2} f\right)
\end{aligned}
$$

If $\operatorname{dim}\left\{\left(H_{1}, H_{2}\right) \in S_{2 k}(K(N)) \times S_{2 k}(K(N)): H_{1} G_{2}=H_{2} G_{1}\right\} \leq$
$\operatorname{dim} S_{k}(K(N))$ then various meromorphic $\frac{H_{1}}{G_{1}}=\frac{H_{2}}{G_{2}}$ are proven holomorphic.

- Useful when it is easier to span spaces of higher weight. (Hecke spreading on products of Gritsenko lifts of theta blocks.)

Construction $N=61$

PY 2009

Theorem

We have $\operatorname{dim} S_{3}(K(61))=7$ and $\operatorname{dim} J_{3,61}^{\text {cusp }}=6$. There is a nonlift Hecke eigenform $f \in S_{3}(K(61))^{-}$which has integral Fourier coefficients of content one. Such an f is defined by

$$
f=-9 G_{1}-2 G_{2}+22 G_{3}+9 G_{4}-10 G_{5}+19 G_{6}-43 \frac{G_{1} G_{6}}{G_{2}}
$$

This f is congruent to a Gritsenko lift from $\operatorname{Grit}\left(J_{3,61}^{\text {cusp }}(\mathbb{Z})\right)$ modulo 43 and this is the only such congruence. Each $G_{i}=\operatorname{Grit}\left(\mathrm{TB}_{3}\left(\mathbf{d}_{i}\right)\right)$ is the Gritsenko lift of a theta block given by $\mathbf{d}_{1}=[2,2,2,3,3,3,3,5,7]$, $\mathbf{d}_{2}=[2,2,2,2,3,4,4,4,7], \mathbf{d}_{3}=[2,2,2,2,3,3,4,6,6]$, $\mathbf{d}_{4}=[1,2,3,3,3,3,4,4,7], \mathbf{d}_{5}=[1,2,3,3,3,3,3,6,6]$, $\mathbf{d}_{6}=[1,2,2,2,4,4,4,5,6]$.

Euler factors computed by PY 2009.

- $f \in S_{3}(K(61))^{-}(\mathbb{Z})$

$$
\begin{aligned}
& Q_{2}(f, t)=1+7 t+24 t^{2}+56 t^{3}+64 t^{4} \\
& Q_{3}(f, t)=1+3 t+3 t^{2}+81 t^{3}+729 t^{4} \\
& Q_{5}(f, t)=1-3 t+85 t^{2}-375 t^{3}+15625 t^{4}
\end{aligned}
$$

Borcherds products

- Each G_{i} that occurs in the expression for f

$$
f=-9 G_{1}-2 G_{2}+22 G_{3}+9 G_{4}-10 G_{5}+19 G_{6}-43 \frac{G_{1} G_{6}}{G_{2}}
$$

is actually also a Borcherds product!

- This follows from:

Gritsenko, Poor, and Yuen: Borcherds products everywhere, Journal of Number Theory 148 (2015).

Construction $N=73$

Theorem

We have $\operatorname{dim} S_{3}(K(73))=9$ and $\operatorname{dim} J_{3,73}^{\text {cusp }}=8$. There is a nonlift Hecke eigenform $f \in S_{3}(K(73))^{-}$which has integral Fourier coefficients of content one. Such an f is defined by
$f=9 G_{1}+19 G_{2}+2 G_{3}-13 G_{4}+34 G_{5}-15 G_{6}-12 G_{7}-10 G_{8}-39 \frac{G_{2} G_{6}}{G_{4}}$.
This f is congruent to a Gritsenko lift from $\operatorname{Grit}\left(J_{3,73}^{\text {cusp }}(\mathbb{Z})\right)$ modulo 3 and 13 , and these are the only such congruences. Each $G_{i}=\operatorname{Grit}\left(\operatorname{TB}_{3}\left(\mathbf{d}_{i}\right)\right)$ is the Gritsenko lift of theta blocks of the form 9 thetas over three etas.

Euler factors computed by PY 2009.

- $f \in S_{3}(K(73))^{-}(\mathbb{Z})$

$$
\begin{aligned}
& Q_{2}(f, t)=1+6 t+22 t^{2}+48 t^{3}+64 t^{4} \\
& Q_{3}(f, t)=1+2 t+3 t^{2}+54 t^{3}+729 t^{4} \\
& Q_{5}(f, t)=1+130 t^{2}+15625 t^{4}
\end{aligned}
$$

Construction $N=79$

PY 2009

Theorem

We have $\operatorname{dim} S_{3}(K(79))=8$ and $\operatorname{dim} J_{3,73}^{\text {cusp }}=7$. There is a nonlift Hecke eigenform $f \in S_{3}(K(79))^{-}$which has integral Fourier coefficients of content one. Such an f is defined by

$$
\begin{aligned}
f & =26 G_{1}-38 G_{2}+19 G_{3}+3 G_{4}-17 G_{5}+27 G_{6}-68 G_{7} \\
& -32 \frac{G_{1}^{2}-G_{2}^{2}-G_{1} G_{3}+2 G_{2} G_{3}-G_{3}^{2}-G_{1} G_{5}+G_{2} G_{6}}{G_{4}} \\
& -32 \frac{-G_{3} G_{6}-2 G_{1} G_{7}-2 G_{2} G_{7}+3 G_{3} G_{7}+G_{5} G_{7}+G_{6} G_{7}}{G_{4}}
\end{aligned}
$$

This f is congruent to a Gritsenko lift from Grit $\left(J_{3,79}^{\text {cusp }}(\mathbb{Z})\right)$ modulo 2^{5}, and any other such congruence is a reduction of this one. Each G_{i} is the Gritsenko lift of theta blocks of the form 9 thetas over three etas.

Euler factors computed by PY 2009.

- $f \in S_{3}(K(79))^{-}(\mathbb{Z})$

$$
\begin{aligned}
& Q_{2}(f, t)=1+5 t+14 t^{2}+40 t^{3}+64 t^{4} \\
& Q_{3}(f, t)=1+5 t+42 t^{2}+135 t^{3}+729 t^{4} \\
& Q_{5}(f, t)=1-3 t+80 t^{2}-375 t^{3}+15625 t^{4}
\end{aligned}
$$

Euler factors via Fourier coefficients.

- $f \in S_{3}(K(61))^{-}(\mathbb{Z})$

$$
\begin{aligned}
& Q_{2}(f, t)=1+7 t+24 t^{2}+56 t^{3}+64 t^{4} \\
& Q_{3}(f, t)=1+3 t+3 t^{2}+81 t^{3}+729 t^{4} \\
& Q_{5}(f, t)=1-3 t+85 t^{2}-375 t^{3}+15625 t^{4}
\end{aligned}
$$

In 2009, these Euler factors were computed by computing Fourier coefficients. The Fourier coefficients were obtained by field operations on three variable Fourier series.

Euler factors via specialization to q-series.

The modularity proofs in On the paramodularity of typical abelian surfaces required many more Euler factors.
Instead of computing Hecke eigenvalues from Fourier coefficients, we computed eigenvalues from specializations of Siegel modular forms to the q-series of elliptic modular forms.
Let s be an integral positive definite 2-by-2 matrix.

$$
\begin{aligned}
\phi_{s}: \mathcal{H}_{1} & \rightarrow \mathcal{H}_{2} \quad \text { (Eichler's trick) } \\
\tau & \mapsto s \tau . \\
\phi_{s}^{*}: M_{k}(& K(N)) \rightarrow M_{2 k}\left(\Gamma_{0}(\operatorname{det}(s) N)\right)
\end{aligned}
$$

Euler factors via specialization to q-series.

Lemma

Let $R \subseteq \mathbb{C}$ be a subring. Let $s=\left(\begin{array}{cc}a & b \\ b & c / N\end{array}\right) \in \operatorname{Mat}_{2}^{\text {sym }}(\mathbb{Q})_{>0}$ with $a, b, c \in \mathbb{Z}$. Then the pullback under ϕ_{s} defines a ring homomorphism

$$
\phi_{s}^{*}: M(K(N), R) \rightarrow M\left(\Gamma_{0}(\operatorname{det}(s) N), R\right)
$$

from the graded ring of Siegel paramodular forms of level N with coefficients in R to the graded ring of elliptic modular forms of level $\operatorname{det}(s) N$ with coefficients in R. The map ϕ_{s}^{*} multiplies weights by 2 and maps cusp forms to cusp forms.

Euler factors via specialization to q-series.

The eigenvalue $a_{p}(f)$ for T_{p} can be computed by performing field operations on q-series via

- $f\left|T_{p}=\sum_{j} f\right| M_{j}=a_{p}(f) f$
- $\phi_{s}^{*}\left(f \mid T_{p}\right)=\sum_{j} \phi_{s}^{*}\left(f \mid M_{j}\right)=a_{p}(f) \phi_{s}^{*}(f)$
- $a_{p}(f)=\frac{1}{\phi_{s}^{*}(f)} \sum_{j} \phi_{s}^{*}\left(f \mid M_{j}\right) \in \mathbb{Z}\left[1 / p, \zeta_{p}\right]\left[\left[q^{1 / p}\right]\right]$
- In this way, we avoid computing Fourier coefficients and need only work with expansions in one variable. This technique allows other technical speed-ups as well.

Eigenvalues via specialization to q-series: PSY 2019

- $f \in S_{3}(K(61))^{-}(\mathbb{Z})$ is a rational function of Gritsenko lifts.

$$
\begin{aligned}
& Q_{2}(f, t)=1+7 t+24 t^{2}+56 t^{3}+64 t^{4} \\
& Q_{3}(f, t)=1+3 t+3 t^{2}+81 t^{3}+729 t^{4} \\
& Q_{5}(f, t)=1-3 t+85 t^{2}-375 t^{3}+15625 t^{4} \\
& \lambda_{2}=-7, \lambda_{3}=-3, \lambda_{5}=3, \lambda_{7}=-9, \lambda_{11}=-4, \lambda_{13}=-3, \ldots
\end{aligned}
$$

- We look forward to computing many more Euler factors for $f \in S_{3}(K(61))^{-}(\mathbb{Z})!$

Thank you!

