Paramodular forms of weight three

Cris Poor Fordham University

Workshop Calabi-Yau Motives Mainz, January 2019

- 1. Part I. Locating nonlift paramodular newforms.
- 2. Part II. Definitions: paramodular forms, Jacobi forms, theta blocks.
- 3. Part III. Constructions of paramodular forms.

This video talk includes joint work with Jerry Shurman (Reed College, Portland, Oregon) and David S. Yuen (University of Hawaii, Manoa, Hawaii).

siegelmodularforms.org

- Our paramodular website: www.siegelmodularforms.org
- (Joint with J. Shurman, D. S. Yuen.)

🕒 Siegel Modula	r Forms X						
← → C 0	← → C ① www.siegelmodularforms.org						
Siegel Modular Forms Computation Pages Cris Poor, Jerry Shurman, David S. Yuen							
Paramodular Forms							
	weight 2, level 731 nonlift construction and eigenform analysis	Cris Poor Jerry Shurman David S. Yuen					
	weight 2, prime level up to 600 nonlift constructions	Cris Poor Jerry Shurman David S. Yuen					
	finding all Borcherds products of a given weight and level	Cris Poor Jerry Shurman David S. Yuen					
	weight 2, squarefree composite level up to 300 Cris Poor Jerry Shurman David S. Yuen						
	weight 2. prime level up to 600	Cris Poor David S. Yuen					
	a family of antisymmetric forms	Cris Poor David S. Yuen					
Siegel Modular Forms of Level 1							
degree 3, weight up to 22		Cris Poor Jerry Shurman David S. Yuen					
degree 4, weight up to 16; degree 5, weight 8 and 10; degree 6, weig		nt 8 Cris Poor David S. Yuen					
	degree 4 Ikeda (DII) lifts, weight up to 16	Cris Poor David S. Yuen					

Objects of interest

• Paramodular cusp forms of weight k and paramodular level N.

 $S_k(K(N))$

• Jacobi cusp forms of weight k and index N.

$J_{k,N}^{\mathrm{cusp}}$

• The Gritsenko lift from Jacobi cusp forms of index N to paramodular cusp forms of level N is an advanced version of the Maass lift.

$$\mathsf{Grit}: J_{k,N}^{\mathrm{cusp}} \to S_k(K(N))$$

 We are interested in the nonlift Hecke eigenforms, especially those of low weight.

new eigenforms in
$$\mathcal{S}_k\left(\mathcal{K}(N)
ight)\setminus {
m Grit}\left(J_{k,N}^{
m cusp}
ight)$$

Weight k = 1

• Paramodular cusp forms of weight 1 are trivial.

 $S_1(K(N)) = \{0\}$

• This follows from the result of Skoruppa that Jacobi cusp forms of weight 1 (and trivial character) are trivial.

$$J_{1,N}^{\mathrm{cusp}} = \{0\}$$

• Not so relevant here but, if we allow a character, there are nontrivial weight 1 Jacobi cusp forms, for example the *theta quarks* of Gritsenko, Skoruppa, Zagier.

$$\frac{\vartheta_{\mathsf{a}}\vartheta_{\mathsf{b}}\vartheta_{\mathsf{a}+\mathsf{b}}}{\eta} \in J^{\mathrm{cusp}}_{1,\,\mathsf{a}^{\mathsf{a}}+\mathsf{a}\mathsf{b}+\mathsf{b}^2}(\chi_3), \qquad \mathsf{a} \not\equiv \mathsf{b} \bmod 3$$

Weight k = 2

- Paramodular Conjecture of Brumer and Kramer: the modularity of abelian surfaces defined over \mathbb{Q} with minimal endomorphisms is shown by weight two nonlift paramodular newforms with rational eigenvalues.
- Poor, Shurman, Yuen have some (partly rigorous, partly heuristic) tables up to $N \le 1000$

N	dim $J_{2,N}^{\mathrm{cusp}}$	$\dim S_2(K(N))$	various comments
249	5	6	BP+Grit; Jac
277	10	11	modular! Q/L ; Jac
295	6	7	BP+Grit; Jac
349	11	12	BP+Grit; Jac
353	11	12	modular! BP+Grit; Jac

(On arXiv— *On the paramodularity of typical abelian surfaces,* Brumer, Pacetti, Poor, Tornaria, Voight, Yuen)

- Generalize method of Faltings-Serre to GSp(4).
- Need residual representation at p = 2 irreducible.
- Class field theory computer calculations classifying extensions with prescribed ramification and Galois group contained in $GSp(4, \mathbb{F}_2)$.
- Hecke eigenvalue computer calculations for paramodular eigenforms written as rational functions of Gritsenko lifts and Borcherds products.
- Galois representations associated to automorphic representations whose archimedian component is a holomorphic limit of discrete series.

Tobias Berger and Krzysztof Klosin: *Deformations of Saito-Kurokawa type and the Paramodular Conjecture.*

arXiv:1710.10228v2 (appendix by Poor, Shurman, Yuen)

- Use theory of Galois deformations.
- Use residual representation at *p* reducible and find elliptic E/\mathbb{Q} realizing a two dimensional piece.
- Possess a paramodular nonlift eigenform that is congruent to a Gritsenko lift modulo a prime p for which the abelian surface A/\mathbb{Q} has rational p-torsion. (For N = 731, this is p = 5.)
- Galois representations associated to automorphic representations whose archimedian component is a holomorphic limit of discrete series.

- The modularity of some hypergeometric motives is conjecturally shown by weight three nonlift paramodular newforms with rational eigenvalues.
- Examples of candidate hypergeometric motives have been shared with us by Dave Roberts in 2014; for example, conductor N = 257 matches a few Euler factors of an eigenform in $S_3(K(257))$.
- Perhaps there are also other types of arithmetic objects or Galois representations that correspond to weight three paramodular newforms?

Weight k = 3 should be more accessible than weight two

- Galois representations arising from weight three paramodular forms are better understood.
 Papers of Rainer Weissauer
- Dimension formulae for dim S_k (K(N)) are known (k ≥ 3) for N prime by Ibukiyama and for N squarefree by Ibukiyama and Kitayama.

Tomoyoshi Ibukiyama: *Dimension formulas of Siegel modular forms of weight 3 and supersingular abelian surfaces* Siegel Modular Forms and AbelianVarieties. Hamana Lake (2007).

Tomoyoshi Ibukiyama and Hidetaka Kitayama: *Dimension formulas of paramodular forms of squarefree level and comparison with inner twist* J. Math. Soc. Japan 69 (2017).

Weight k = 3

Use Ibukiyama's formula for dim S₃ (K(p)) and Skoruppa and Zagier's formula for dim J^{cusp}_{3,p}.

р	dim $J_{3,p}^{\mathrm{cusp}}$	$\dim S_3(K(p))$	various comments
61	6	7	$BP{+}Grit$ and Q/L
73	8	9	$BP{+}Grit$ and Q/L
79	7	8	$BP{+}Grit$ and $Q{/}L$
89	8	9	
97	11	13	
101	9	11	
103	10	12	

 Ash, Gunnells, and McConnell saw eigensystems for p ∈ {61, 73, 79} in H⁵ (Γ₀(p), ℂ) and predicted that these came from Siegel modular forms.

Avner Ash, Paul E. Gunnells, and Mark McConnell: Cohomology of congruence subgrous of $SL_4(\mathbb{Z})$. II J. Number Theory 128 (2008).

• It was Armand Brumer who noticed the connection to paramodular forms evident in the dimension formulae.

Euler factors computed by Ash, Gunnells, and McConnell.

• Eigensystem from
$$H^5(\Gamma_0(61), \mathbb{C})$$

 $Q_2(t) = 1 + 7t + 24t^2 + 56t^3 + 64t^4$
 $Q_3(t) = 1 + 3t + 3t^2 + 81t^3 + 729t^4$

• Eigensystem from
$$H^5(\Gamma_0(73), \mathbb{C})$$

 $Q_2(t) = 1 + 6t + 22t^2 + 48t^3 + 64t^4$
 $Q_3(t) = 1 + 2t + 3t^2 + 54t^3 + 729t^4$

• Eigensystem from $H^5(\Gamma_0(79), \mathbb{C})$

$$Q_2(t) = 1 + 5t + 14t^2 + 40t^3 + 64t^4$$
$$Q_3(t) = 1 + 5t + 42t^2 + 135t^3 + 729t^4$$

Weight k = 3

• Use Ibukiyama and Katsurada's formula for dim $S_3(K(N))$, N squarefree, or heuristic programs written by Jerry and David

р	dim $J_{3,p}^{\mathrm{cusp}}$	$\dim S_3(K(p))$	various comments
61	6	7	$BP{+}Grit$ and Q/L
69	5	6	
73	8	9	$BP{+}Grit$ and Q/L
76	5	6	not squarefree
79	7	8	$BP{+}Grit$ and $Q{/}L$
82	7	8	

Definitions: paramodular forms, Jacobi forms, theta blocks

Definition of Siegel Modular Forms

- Siegel Upper Half Space: $\mathcal{H}_n = \{Z \in M^{sym}_{n \times n}(\mathbb{C}) : \text{Im } Z > 0\}.$
- Symplectic group: $\sigma = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \operatorname{Sp}_n(\mathbb{R})$ acts on $Z \in \mathcal{H}_n$ by $\sigma \cdot Z = (AZ + B)(CZ + D)^{-1}$.
- $\Gamma \subseteq Sp_n(\mathbb{R})$ such that $\Gamma \cap Sp_n(\mathbb{Z})$ has finite index in Γ and $Sp_n(\mathbb{Z})$
- Slash action: For $f : \mathcal{H}_n \to \mathbb{C}$ and $\sigma \in \operatorname{Sp}_n(\mathbb{R})$, $(f|_k \sigma)(Z) = \det(CZ + D)^{-k} f(\sigma \cdot Z).$
- Siegel Modular Forms: $M_k(\Gamma)$ is the \mathbb{C} -vector space of holomorphic $f : \mathcal{H}_n \to \mathbb{C}$ that are "bounded at the cusps" and that satisfy $f|_k \sigma = f$ for all $\sigma \in \Gamma$.
- Cusp Forms: $S_k(\Gamma) = \{ f \in M_k(\Gamma) \text{ that "vanish at the cusps"} \}$

Definition of paramodular form

• A *paramodular form* is a Siegel modular form for a paramodular group. In degree 2, the paramodular group of level *N*, is

$$\Gamma = K(N) = \begin{pmatrix} * & N* & * & * \\ * & * & * & */N \\ * & N* & * & * \\ N* & N* & N* & * \end{pmatrix} \cap \operatorname{Sp}_2(\mathbb{Q}), \quad * \in \mathbb{Z},$$

- $\mathcal{K}(N)$ is the stabilizer in $\operatorname{Sp}_2(\mathbb{Q})$ of $\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z} \oplus N\mathbb{Z}$.
- ${}^{T}K(N) \setminus \mathcal{H}_2$ is a moduli space for complex abelian surfaces with polarization type (1, N). (*T* is "transpose" here.)
- The paramodular Fricke involution splits paramodular forms into plus and minus spaces.

$$S_k(K(N)) = S_k(K(N))^+ \oplus S_k(K(N))^-$$

Arithmetic spin L-function

Any errors are my own.

Roberts and Schmidt define the following Hecke operators in order to compute the Langlands *L*-function of an eigenform $f \in S_k (K(N))^{\epsilon}$.

- $T_{0,1}(p) = K(N) \operatorname{diag}(p, p, 1, 1) K(N)$
- $T_{1,0}(p) = K(N) \operatorname{diag}(p, p^2, p, 1) K(N)$
- $f|_k T_{0,1}(p) = \lambda_p f$, $f|_k T_{1,0}(p) = \mu_p f$, $\epsilon_p =$ Atkin-Lehner sign

•
$$p \nmid N$$

 $Q_p(f, t) = 1 - \lambda_p t + (p\mu_p + p^{2k-3} + p^{2k-5})t^2 - p^{2k-3}\lambda_p t^3 + p^{4k-6}t^4$
• $p||N$
 $Q_p(f, t) = 1 - (\lambda_p + p^{k-3}\epsilon_p)t + (p\mu_p + p^{2k-3})t^2 + p^{3k-5}\epsilon_p t^3$

•
$$p^2 \mid N$$

 $Q_p(f,t) = 1 - \lambda_p t + (p\mu_p + p^{2k-3})t^2$

Arithmetic spin L-function

Roberts and Schmidt compute the Langlands *L*-function of an eigenform $f \in S_k (K(N))^{\epsilon}$. (But I rewrote it in the arithmetic normalization.)

$$L^{\operatorname{arith}}(s, f, \operatorname{spin}) = \prod_{p} Q_{p}(f, p^{-s})^{-1}$$

$$\Lambda^{\operatorname{arith}}(s, f, \operatorname{spin}) = \Gamma_{\mathbb{C}}(s)\Gamma_{\mathbb{C}}(s-k+2)L^{\operatorname{arith}}(s, f, \operatorname{spin})$$

• $\Gamma_{\mathbb{C}}(s) = 2\Gamma(s)(2\pi)^{-s}$

• Proven functional equation for the completed spin L-function

$$\Lambda^{\operatorname{arith}}(2k-2-s,f,\operatorname{spin}) = (-1)^k \epsilon N^{s-k+1} \Lambda^{\operatorname{arith}}(s,f,\operatorname{spin})$$

Fourier-Jacobi expansions

• Fourier expansion of Siegel modular form:

$$f(Z) = \sum_{T \ge 0} a(T; f) e(tr(ZT))$$

• Fourier expansion of paramodular form $f \in M_k(K(N))$ in coordinates:

$$f\left(\begin{smallmatrix} \tau & z \\ z & \omega \end{smallmatrix}\right) = \sum_{\substack{n,r,m \in \mathbb{Z}:\\n,m \ge 0, \, 4Nnm \ge r^2}} a\left(\begin{pmatrix} n & r/2 \\ r/2 & Nm \end{pmatrix}; f \right) e(n\tau + rz + Nm\omega)$$

• Fourier-Jacobi expansion of paramodular form $f \in M_k(K(N))$:

$$f(\begin{smallmatrix} \tau & z \\ z & \omega \end{smallmatrix}) = \sum_{m \in \mathbb{Z}: m \ge 0} \phi_m(\tau, z) e(Nm\omega)$$

Fourier-Jacobi expansion (FJE)

$$\mathsf{FJE:} f(\begin{smallmatrix} \tau & z \\ z & \omega \end{smallmatrix}) = \sum_{m \in \mathbb{Z}: m \ge 0} \phi_m(\tau, z) e(\mathsf{Nm}\omega)$$

The Fourier-Jacobi expansion of a paramodular form is fixed *term-by-term* by the following subgroup of the paramodular group K(N):

$$P_{2,1}(\mathbb{Z}) = egin{pmatrix} * & 0 & * & * \ * & * & * & * \ * & 0 & * & * \ 0 & 0 & 0 & * \end{pmatrix} \cap \mathsf{Sp}_2(\mathbb{Z}), \quad * \in \mathbb{Z},$$

• $P_{2,1}(\mathbb{Z})/\{\pm I\} \cong SL_2(\mathbb{Z}) \ltimes Heisenberg(\mathbb{Z})$

Thus the coefficients ϕ_m are automorphic forms in their own right and easier to compute than Siegel modular forms. This is one motivation for the introduction of Jacobi forms.

Definition of Jacobi Forms: Automorphicity

• Assume $\phi : \mathcal{H} \times \mathbb{C} \to \mathbb{C}$ is holomorphic.

$$E_{m}\phi:\mathcal{H}_{2}\to\mathbb{C}$$
$$\begin{pmatrix} \tau & z\\ z & \omega \end{pmatrix}\mapsto\phi(\tau,z)e(m\omega)$$

• Assume that $E_m \phi$ transforms by $\chi \det(CZ+D)^k$ for

$$P_{2,1}(\mathbb{Z}) = egin{pmatrix} * & 0 & * & * \ * & * & * & * \ * & 0 & * & * \ 0 & 0 & 0 & * \end{pmatrix} \cap \mathsf{Sp}_2(\mathbb{Z}), \quad * \in \mathbb{Z},$$

Definition of Jacobi Forms: Support

 Jacobi forms are tagged with additional adjectives to reflect the support supp(φ) = {(n, r) ∈ Q² : c(n, r; φ) ≠ 0} of the Fourier expansion

$$\phi(\tau,z) = \sum_{n,r\in\mathbb{Q}} c(n,r;\phi)q^n\zeta^r, \qquad q = e(\tau), \zeta = e(z).$$

φ ∈ J^{cusp}_{k,m}: automorphic and c(n, r; φ) ≠ 0 ⇒ 4mn - r² > 0
φ ∈ J_{k,m}: automorphic and c(n, r; φ) ≠ 0 ⇒ 4mn - r² ≥ 0
φ ∈ J^{weak}_{k,m}: automorphic and c(n, r; φ) ≠ 0 ⇒ n ≥ 0
φ ∈ J^{wh}_{k,m}: automorphic and c(n, r; φ) ≠ 0 ⇒ n ≥ -∞ ("wh" stands for *weakly holomorphic*)

Index Raising Operators $V(\ell): J_{k,m} \rightarrow J_{k,m\ell}$ from Eichler-Zagier

The Jacobi $V(\ell)$ are images of the elliptic $T(\ell)$.

Elliptic Hecke Algebra \longrightarrow Jacobi Hecke Algebra

$$\sum_{b \in A} SL_2(\mathbb{Z}) \begin{pmatrix} a & b \\ c & d \end{pmatrix} \mapsto \sum_{c \in P_{2,1}(\mathbb{Z})} \begin{pmatrix} a & 0 & b & 0 \\ 0 & ad - bc & 0 & 0 \\ c & 0 & d & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
$$\sum_{b \in A} SL_2(\mathbb{Z}) \begin{pmatrix} a & b \\ 0 & d \end{pmatrix} \mapsto \sum_{b \in A} P_{2,1}(\mathbb{Z}) \begin{pmatrix} a & 0 & b & 0 \\ 0 & \ell & 0 & 0 \\ 0 & 0 & d & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
$$T(\ell) \mapsto V(\ell)$$

Fourier-Jacobi expansion of the Gritsenko lift

Any Jacobi cusp form can be the leading Fourier-Jacobi coefficient of a paramodular form.

Theorem (Gritsenko)

For $\phi \in J_{k,m}^{\mathrm{cusp}}$ the series $\mathsf{Grit}(\phi)$ converges and defines a map

$$\begin{array}{l} \operatorname{Grit}: J_{k,m}^{\operatorname{cusp}} \to S_k \left(K(m) \right)^{\epsilon}, \quad \epsilon = (-1)^k. \\ \operatorname{Grit}(\phi) \left(\begin{smallmatrix} \tau & z \\ z & \omega \end{smallmatrix} \right) = \sum_{\ell \in \mathbb{N}} (\phi | V_\ell)(\tau, z) e(\ell m \omega). \end{array}$$

$$c(n,r;\phi|V_{\ell}) = \sum_{\substack{a \in \mathbb{N}:\\a|\gcd(n,r,\ell)}} a^{k-1} c\left(\frac{n\ell}{a^2},\frac{r}{a};\phi\right)$$

Borcherds Product Summary

Theorem (Borcherds, Gritsenko, Nikulin)

Given $\psi \in J_{0,N}^{wh}(\mathbb{Z})$, a weakly holomorphic weight zero, index N Jacobi form with integral coefficients

$$\psi(\tau, z) = \sum_{n, r \in \mathbb{Z}: n \ge -N_o} c(n, r) q^n \zeta^r$$

there is a weight $k' \in \mathbb{Z}$, a character χ , and a meromorphic paramodular form $Borch(\psi) \in M_{k'}^{mero}(K(N))(\chi)$

$$\mathsf{Borch}(\psi)(Z) = q^A \zeta^B \xi^C \prod_{n,m,r \in \mathbb{Z}} \left(1 - q^n \zeta^r \xi^{Nm}\right)^{c(nm,r)}$$

converging in a nghd of infinity and defined by analytic continuation.

Theta Blocks: a great way to make Jacobi forms due to Gritsenko, Skoruppa, and Zagier

• Dedekind Eta function $\eta \in J^{\mathrm{cusp}}_{1/2,0}(\epsilon)$

$$\eta(au)=q^{1/24}\prod_{n\in\mathbb{N}}(1-q^n)$$

• Odd Jacobi Theta function $artheta\in J^{\mathrm{cusp}}_{1/2,1/2}(\epsilon^3 v_{H})$

$$artheta(au, z) = q^{1/8} \left(\zeta^{1/2} - \zeta^{-1/2}
ight) \prod_{n \in \mathbb{N}} (1 - q^n) (1 - q^n \zeta) (1 - q^n \zeta^{-1})$$

• $\mathsf{TB}_k[d_1, d_2, \dots, d_\ell](\tau, z) = \eta(\tau)^{2k-\ell} \prod_{j=1}^\ell \vartheta(\tau, d_j z) \in J_{k,m}^{\text{mero}}(\epsilon^{2k+2\ell})$ where $2m = d_1^2 + d_2^2 + \dots + d_\ell^2$ and $d_i \in \mathbb{N}$. Constructions of paramodular forms

Pick your two favorite Gritsenko lifts $G_1, G_2 \in S_k(K(N))$ and define a map

 $M: S_k(K(N)) \to \{(H_1, H_2) \in S_{2k}(K(N)) \times S_{2k}(K(N)): H_1G_2 = H_2G_1\}$ $f \mapsto (G_1f, G_2f)$

If dim{ $(H_1, H_2) \in S_{2k}(K(N)) \times S_{2k}(K(N)) : H_1G_2 = H_2G_1$ } dim $S_k(K(N))$ then various meromorphic $\frac{H_1}{G_1} = \frac{H_2}{G_2}$ are proven holomorphic.

• Useful when it is easier to span spaces of higher weight. (Hecke spreading on products of Gritsenko lifts of theta blocks.)

Construction N = 61

PY 2009

Theorem

We have dim $S_3(K(61)) = 7$ and dim $J_{3,61}^{cusp} = 6$. There is a nonlift Hecke eigenform $f \in S_3(K(61))^-$ which has integral Fourier coefficients of content one. Such an f is defined by

$$f = -9G_1 - 2G_2 + 22G_3 + 9G_4 - 10G_5 + 19G_6 - 43\frac{G_1G_6}{G_2}.$$

This f is congruent to a Gritsenko lift from Grit $(J_{3,61}^{cusp}(\mathbb{Z}))$ modulo 43 and this is the only such congruence. Each $G_i = \text{Grit}(\text{TB}_3(\mathbf{d}_i))$ is the Gritsenko lift of a theta block given by $\mathbf{d}_1 = [2, 2, 2, 3, 3, 3, 3, 5, 7]$, $\mathbf{d}_2 = [2, 2, 2, 2, 3, 4, 4, 4, 7]$, $\mathbf{d}_3 = [2, 2, 2, 2, 3, 3, 4, 6, 6]$, $\mathbf{d}_4 = [1, 2, 3, 3, 3, 3, 4, 4, 7]$, $\mathbf{d}_5 = [1, 2, 3, 3, 3, 3, 3, 6, 6]$, $\mathbf{d}_6 = [1, 2, 2, 2, 4, 4, 4, 5, 6]$.

•
$$f \in S_3(K(61))^-(\mathbb{Z})$$

$$Q_{2}(f,t) = 1 + 7t + 24t^{2} + 56t^{3} + 64t^{4}$$
$$Q_{3}(f,t) = 1 + 3t + 3t^{2} + 81t^{3} + 729t^{4}$$
$$Q_{5}(f,t) = 1 - 3t + 85t^{2} - 375t^{3} + 15625t^{4}$$

• Each G_i that occurs in the expression for f

$$f = -9G_1 - 2G_2 + 22G_3 + 9G_4 - 10G_5 + 19G_6 - 43\frac{G_1G_6}{G_2}.$$

is actually also a Borcherds product!

• This follows from:

Gritsenko, Poor, and Yuen: *Borcherds products everywhere*, Journal of Number Theory 148 (2015).

Theorem

We have dim $S_3(K(73)) = 9$ and dim $J_{3,73}^{cusp} = 8$. There is a nonlift Hecke eigenform $f \in S_3(K(73))^-$ which has integral Fourier coefficients of content one. Such an f is defined by

$$f = 9G_1 + 19G_2 + 2G_3 - 13G_4 + 34G_5 - 15G_6 - 12G_7 - 10G_8 - 39\frac{G_2G_6}{G_4}$$

This f is congruent to a Gritsenko lift from Grit $(J_{3,73}^{cusp}(\mathbb{Z}))$ modulo 3 and 13, and these are the only such congruences. Each $G_i = \text{Grit}(\text{TB}_3(\mathbf{d}_i))$ is the Gritsenko lift of theta blocks of the form 9 thetas over three etas.

Euler factors computed by PY 2009.

•
$$f \in S_3(K(73))^-(\mathbb{Z})$$

$$Q_{2}(f,t) = 1 + 6t + 22t^{2} + 48t^{3} + 64t^{4}$$
$$Q_{3}(f,t) = 1 + 2t + 3t^{2} + 54t^{3} + 729t^{4}$$
$$Q_{5}(f,t) = 1 + 130t^{2} + 15625t^{4}$$

Construction N = 79

PY 2009

Theorem

We have dim $S_3(K(79)) = 8$ and dim $J_{3,73}^{cusp} = 7$. There is a nonlift Hecke eigenform $f \in S_3(K(79))^-$ which has integral Fourier coefficients of content one. Such an f is defined by

$$f = 26G_1 - 38G_2 + 19G_3 + 3G_4 - 17G_5 + 27G_6 - 68G_7$$

- $32\frac{G_1^2 - G_2^2 - G_1G_3 + 2G_2G_3 - G_3^2 - G_1G_5 + G_2G_6}{G_4}$
- $32\frac{-G_3G_6 - 2G_1G_7 - 2G_2G_7 + 3G_3G_7 + G_5G_7 + G_6G_7}{G_4}$

This f is congruent to a Gritsenko lift from Grit $(J_{3,79}^{\text{cusp}}(\mathbb{Z}))$ modulo 2^5 , and any other such congruence is a reduction of this one. Each G_i is the Gritsenko lift of theta blocks of the form 9 thetas over three etas.

•
$$f \in S_3(K(79))^-(\mathbb{Z})$$

$$Q_2(f,t) = 1 + 5t + 14t^2 + 40t^3 + 64t^4$$
$$Q_3(f,t) = 1 + 5t + 42t^2 + 135t^3 + 729t^4$$
$$Q_5(f,t) = 1 - 3t + 80t^2 - 375t^3 + 15625t^4$$

Euler factors via Fourier coefficients.

•
$$f \in S_3 (K(61))^- (\mathbb{Z})$$

 $Q_2(f,t) = 1 + 7t + 24t^2 + 56t^3 + 64t^4$
 $Q_3(f,t) = 1 + 3t + 3t^2 + 81t^3 + 729t^4$
 $Q_5(f,t) = 1 - 3t + 85t^2 - 375t^3 + 15625t^4$

In 2009, these Euler factors were computed by computing Fourier coefficients. The Fourier coefficients were obtained by field operations on three variable Fourier series.

The modularity proofs in *On the paramodularity of typical abelian surfaces* required many more Euler factors.

Instead of computing Hecke eigenvalues from Fourier coefficients, we computed eigenvalues from specializations of Siegel modular forms to the *q*-series of elliptic modular forms.

Let s be an integral positive definite 2-by-2 matrix.

 $\phi_{s} \colon \mathcal{H}_{1} \to \mathcal{H}_{2}$ (Eichler's trick) $\tau \mapsto s\tau.$

$$\phi_s^*: M_k(K(N)) \to M_{2k}(\Gamma_0(\det(s)N))$$

Euler factors via specialization to q-series.

Lemma

Let $R \subseteq \mathbb{C}$ be a subring. Let $s = \begin{pmatrix} a & b \\ b & c/N \end{pmatrix} \in \operatorname{Mat}_2^{\operatorname{sym}}(\mathbb{Q})_{>0}$ with $a, b, c \in \mathbb{Z}$. Then the pullback under ϕ_s defines a ring homomorphism

 $\phi_s^*: M(K(N), R) \to M(\Gamma_0(\det(s)N), R)$

from the graded ring of Siegel paramodular forms of level N with coefficients in R to the graded ring of elliptic modular forms of level det(s)N with coefficients in R. The map ϕ_s^* multiplies weights by 2 and maps cusp forms to cusp forms.

The eigenvalue $a_p(f)$ for T_p can be computed by performing field operations on q-series via

•
$$f \mid T_p = \sum_j f \mid M_j = a_p(f)f$$

•
$$\phi_s^*(f \mid T_p) = \sum_j \phi_s^*(f \mid M_j) = a_p(f)\phi_s^*(f)$$

•
$$a_p(f) = \frac{1}{\phi_s^*(f)} \sum_j \phi_s^*(f \mid M_j) \in \mathbb{Z}[1/p, \zeta_p][[q^{1/p}]]$$

 In this way, we avoid computing Fourier coefficients and need only work with expansions in one variable. This technique allows other technical speed-ups as well. • $f \in S_3(K(61))^-(\mathbb{Z})$ is a rational function of Gritsenko lifts.

$$Q_{2}(f,t) = 1 + 7t + 24t^{2} + 56t^{3} + 64t^{4}$$

$$Q_{3}(f,t) = 1 + 3t + 3t^{2} + 81t^{3} + 729t^{4}$$

$$Q_{5}(f,t) = 1 - 3t + 85t^{2} - 375t^{3} + 15625t^{4}$$

$$\lambda_{2} = -7, \lambda_{3} = -3, \lambda_{5} = 3, \lambda_{7} = -9, \lambda_{11} = -4, \lambda_{13} = -3, \dots$$

 We look forward to computing many more Euler factors for *f* ∈ S₃ (K(61))[−] (Z) !

Thank you!